\

AS/400

Volume 3 ¢ Ilssue 1

avd

February/March

A MIDRANGE
COMPUTING
/ PUBLICATION

13989

XML: Managing Data
on the Web
by Teresa Pelkie 1

A Frameworks for
E-business
by Don Denoncourt2

Emails,Pointers,Advice5

A Tour of XML Applications
by Don Denoncourt 7

A Java GUI for DSPFFD
by Alex Garrison.................... 11

Enabling HTTP Services on
Your Domino Server

by tamas perlaky...............16
AS/400 Servlets 101

by Sonjaya Tandon 18
WebSphere Application
Server for AS/400

by Lisa Wellman...............23

Putting Network Address
Translation to Work
by Chris Green27

Choosing the Right Internet
Development Technology,

Part 4—HTML
by Randy Dufault 29
anje:/HotSites ... 32

Find Web-exclusive
content for this issue
at www midrange
computing.com/anje/99/02

XML: Managing Data

on the Web

by Teresa Pelkie

T he newest addition to the selection of
Web technologies 1s another language
known as Extensible Markup Language
(XML). XML is a of the
Standardized General Markup Language

subset

(rwnenvaw3c.org/ TR/RE C-xml). XML -related
proposals—such as the Extensible Stylesheet
Language (XSL), XLink, Xpointer (linking),
XML Schema, XML-Query Language
(XML-QL), and others—are still in the

(SGML), which is a markup
language for describing large,
complex manuals. SGML was
developed in 1974 by Charles
Goldberg who also developed

its ancestor Generalized

working stages. Nonetheless,
XML 1s already being used mn
industry and on the Web, and it
is gaining attention.

Find additional code
for this article an the Web

How XML Works

at www.nidronge

Markup Language (GML) for

computing com/anje,/99/02

with Data

IBM in 1969.

XML, like SGML, is a metalanguage
used to describe or create other markup lan-
guages. The most widely deployed SGML
application is HTML, but HTML was not
designed to do the things that are demanded
of it today. Consequently, members of the
SGML Working Group came up with a com-
pact version of SGML that can be processed
on the Web. The ininal XML draft specifica-
tion was presented in 1996 and became a
World Wide Web (W3C)
Recommendation on February 10, 1998

Consortium

Although HIML is responsible
for presenting the contents of a document
on the screen, it says nothing about the
meaning of the content. XML separates the
content from the display by describing the
content or data in a meaningful schema.
XML is called extensible because it allows
you to create custom tags to fit your needs.
These tags describe the different parts of the
document content as a label would.

For example, the HTML markup
<H1>First Central Bank</H1> displays the

continued on page 3

€ hittp: //wwivs. wrwsighls. com/articles/xmi/pessonnel.xml

soft Internet Explorer

Last Name | First Name | Social Security Number | Birth Date Paosition
| Jones Sara 3456789012 1980-04-01| Secretary
Sandes Kevin 2345678901 1968-06-13 | Accounting Manager
| | smith | Joha 1234567890 1960-03-05| Systems Analyst

Figure 1: The XML data is processed by XSL and arranged alphabetically into a

table in Internet Explorer 5.0 Beta.

et A e A m N A, AP R R R~

[alalas!

continwed from page |

content in large bold type but says nothing abour the data
itself. The XML markup <company> First Central
Bank</company> describes and identifies the content and dis-
tinguishes it from other content or data in the document.

XMI’s custom tags give meaning to the dara, which
enables communication, exchange, and processing of informa-
ton. XML 1s not concerned with how the data is displayed in
the browser. That is the job of XSI, a style sheet language that
formats the data for visual presentation.

XMUDs most important use 1s in the exchange of data. XML
tailors data for exchange of information between databases,
applications, and operating systems. It allows the data to be
viewed in multiple ways. Two important applications in which
XML 15 used are messaging and financial exchange. XMI’s
tree structure provides a navigation structure and is used for
searching, filtering, and managing documents. XML also han-
dles imternational character sets.

Many XMI. vocabularies or languages are being devel-
oped. These vocabularies are known as a Document Type
Definition (DTD). A DTD is a structured tormar for describ-
ing an industry-specific area of data. DTDs enable developers
and users to speak the same language by agreeing on a com-
mon standard.

Microsoft’s Channel Definition Format (CDF), used in
Internet Explorer 4.0 to define channels, was one of the first
examples of an XML language. Another example is the Open
Financial Exchange (OFX), which provides a standard lan-
guage for banks to allow customers to manage their finances
online. The Resource Description Formar (RDF) for describing
metadata will be used in Netscape 5.0 to store bookmark and
history information. Future versions of Microsoft Office will
use XML as one of two native formats for storing dara.

At this point, I will explain how to create a DTD and the
XMI. document markup by using the data in three records of
a personnel database as an example. I will use XSL to display
the document as shown in Figure 1. You can see this example
at winowwwsights.comfarticles/xml/personnel xml. You need
to use Internet Explorer 5.0 Beta to see this example. When
you install this browser, you will have the option to keep your
present version of Internet Explorer as well.

The XML Document

XML is case-sensitive and most reserved words are upper case.

An XML document contains six types of markup:

* Elements are used to create the custom tags, which describe
the data. Elements form the schema of the document. All
elements have an opening and closing tag such as <ele-
ment></element>. Tags must be closed, nested in order, and
follow a hierarchical structure. Empty elements that do not

contain any dara or other tags, such as an image tag, are
represented as . Only one root element is allowed in
a document.

e Attributes are name/value pairs that provide an element with
additional information. Attribute values must be in quotes.

 Comments begin with <!— and end with ——>.

e Entities are keywords, reserved characters, repeated text, or
content from an external file.

® Pracessing Instructions (Pls) arc instructions to the browser
that start with <? and end with ?>.

o CDATA rtells the XML parser to ignore the reserved

characters.

Document Type Definition

The DTD lists the tags, attributes, and entities that are allowed
in the document, the conditions under which they can be used,
and the nesting structure of the rags. Many documents can ref-
erence the same DTD. An XML document does not have to
contain a DTD; it can function the same without it. An XML
document that follows all the markup rules 1s said to be well-
formed. An XML document that is well-formed and contains
a DTD i1s said to be valid.

Figure 2 shows the source code for my XML example.
Section A states that this is an XML document. The DTD
is named personnel (Section B), and the declarations that
follow are enclosed in brackets (Sections B through Section
G). The first element declaration, personnel, declares the
root element or node for the entire document (Section C).
Personnel can contain only one child element or node,
employee. The plus sign (+) indicates that employee can be
repeated. The element employee 1s declared next (Section
D), and it 1s allowed to contain four child elements or
nodes: name, birthdate, ssn, and position. The question
mark (2} after birthdate indicates that it is optional. An
attribute declaration for the element employee is next
(Section E). The name of this attribute is department and it
can take three values: mis, accounting, or personnel.
Accounting is positioned again at the end to indicate that
this is the default. The declaration for the element called
name 1s next (Section F) and it contains two child elements
or nodes. The data types for the element are assigned next
in the same order in which they were declared (Section G).
All of these elements can contain parsed character data.
Notice that three elements, personnel, employee, and name
do not contain any data, only other elements.

This is a simple DTD. There are many more rules and con-
ditions that can be applied. My XML example (Figure 2)
shows the DTD at the beginning of the document. The DTD
can be placed at the beginning of an XML document or it can
be referenced in an external file. If the DTD were referenced

from an external file it would be written as follows:
<!DOCTYPE personnel SYSTEM
“"personnel.dtd">

The Document Element

The document element is the root element or node for the
entire document. The document element in my example is
personnel as shown in Section I of Figure 2. All of the con-
tent and other markup in this document is contained
between the <personnel></personnel> tags. The tags and

AS/400 Netdava Expert February/March 1999

e

<?xml version="1.0"7>
<DIV xmlns:xsl="http://wwWw.w3.0rg/TR/WD-xsl">
<TABLE BORDER="1" cellspacing="0"
cellpadding="4" >

A

<THEAD STYLE=
"background-color:#CCFFFF; color:navy'>
<TH>Last Name</TH>
<TH>First Name</TH>
<TH>Social Security Number</TH>
<TH>Birth Date</TH>
<TH>Position</TH>
</THEAD>
<xsl:for-each B
select="personnel /employee"
order-by="+ name/last'>
<TR STYLE="background-color:#ffffee">
<TD STYLE='"padding-lLeft:1em'>

<xsl:value—of select="name/last"/>
 c
</TD>
<TD STYLE="padding—left:1em'>

<xsl:value—of select="name/first"/> @E’:

</TD>
<TD STYLE="padding—Left:1em'>

<xsl:value—of select="ssn"/>

</TD>
<TD STYLE="padding-left:lem">
 c
<xsl:value—of select="birthdate"/>

</TD>
<TD STYLE="padding—left:1em'>

<xsl:value—of select="position"/>

</TD>
</TR>
/alfor=agelss i
</TABLE>
</DIV>

Figure 3: The XSL document (personnel.xml) uses style sheets and instructions to process and display data.

IBM, Lotus, Infoseek, and Silicon Graphics are among the
many members of this working group. XML will work with
HTML to separate the interface from the underlying data.
In the same way that HTML provides a universal formart

to view information, XML offers a umversal method to

Expert

describe and manage data.

Teresa Pelkie is the owner of WWW Sights in the San
California, She reached at

teresa@wwwsights.com.

Diego, area. can be

Emails. Point Vi

Java’s Static Initializer and the Singleton Design Pattern

Object-oriented programming languages such as Java can
easily benetit trom reusing coding parterns. The authors of
Design Patterns: Llements of Reusable Object-Oriented
Software advocate a pattern called Singleton. A Singleton
works very well in the circumstance where you only ever want
one instance of an object. The obvious example for a Singleton
is an IBM AS/400 Toolbox for Java connection object. The
Java implementation for a Singleton AS/400 connection uses
static fields and a special function called the staric initializer
function, as shown in the Java class in Figure 1. The fields of a
Java class that are modified with the static keyword are fields
whose value is shared among all instances of that class. They
are similar to data areas in an RPG program because the same
valuc is shared. In Figure 1, all the fields are modified with the
static keyword. Note that all but the AS400 field have their
initial values specified. So, where does the AS400 object get ini-
tialized? It’s initialized in the statuc initializer. The static initial-
izer looks like a function because it has curly braces, but it has

import com.ibm.as400.access.*;
class Profile {
static String USER = "DENONCOURT";
static String PASS = "secret"';
static String URL = "mc url";
static AS400 as400;
static {
as400 = new AS400(Profile.URL,
Profile.USER, Profile.PASS);
}
}

Figufe 1: An AS5/400 Profile class is an excellent use
for the Singleton design pattern.

no function name; it only has the static keyword. If the
static 1itiahizer has no function name, then how are you
supposed to call it? You don’t. The Java Virtual Machine
(JVM) calls it the first time its class is used in an application.
That means thar I can simply use Profile.as400 and, the first
tme, the JVM invokes the static intializer. On subsequent

/st
3
Q0

—— -

structure are built according to the DTD. Notice thar rhe
order in which the DT'D declares the elements is the same
order in which they appear in the document element. The
employee element has a department attribute but contains
no content of 1ts own. Rather, it contains four child ele-
ments, one of which, name, contains two child elements of
its own. The employee element appears three times but can
appear many more.

The XML tags are descriptive of the dara they contain.
They are playing the same role as the schema does in a dara-
base. The tags don’t say what to do with the data; they just say
what the data is.

Using XSL to Process the Data

The data in an XML document is processed in another
document using XSL. XSL (refer to wivwaw3.0rg/ TR/WD-
xsl) is still in its working group phase at W3C. It provides
not only a style sheer language to specify formatting seman-
tics, but also a language for transforming XML documents.
XSL does a lot more than apply styles. An XSL processor
can evaluate, arrange, rearrange, and process information,
The data in an XML document can be easily added to and
modified.

In my example, the XSL document (shown in Figure 3)
is called in Figure 2, Section H and processes the data in
Figure 2 to display the result shown in Figure 1. The first
two lines of the document contain processing instructions
(Figure 3, Section A). You can see style sheets used through-

out the document by the STYLE="value" expression.
The <xsl></xsl> start and stop tags define the root
element of the XSL document as shown in Section B of

Figure 3. The <xsl: for-each select...> instruction in Section B
says that, for every employee that is found in the personnel
element, do everything below until the closing tag </xsl:for-
cach>. It processes the instruction in the cells of the table and
orders the rows by last name. The <xslivalue-of select
struction in Section C returns the content of the element.
This instruction is processed in all five cells so that the infor-
mation for each employee is entered under the headings Iast
Name, First Name, Social Security Number, Birth Date, and
Position in Figure 1. This process continues until the dara for
every employee is entered into a row in the rable.

XML describes the data and organizes it into a struc-
tured format so that it can be delivered in a consistent way.
XSL is the processing power that turns this raw data
nto information. It provides a language for transforming
XML documents and presents an XML vocabulary for
specifying formatting semantics. XSL allows XML data to
be manipulated and displayed in many different ways, gen-
crating different virtual XML documents in response to
user queries. Adobe, Microsoft, Arbortext, Inso, Bitstream,
Enigma, IBM, Lotus, Netscape, RivCom, and Sun
Microsystems have taken part in the development of XSL.

Remember that XSL is presently a W3C proposal and is

stll being revised.

Looking Ahead

At the Future of HTML Workshop held in San Jose,
California, in May of 1998, the W3C decided that the next
generation of HTML would be cast as a suite of XML tags.
The W3C has set up a new HTML Working Group that is
expected to last unol 2000. Microsofr, Netscape, Adobe,

<!ATTLIST employee depart'v :

<!ELEMENT first (HPCDATA)>
<!ELEMENT last (#PCDATA)> _
<!ELEMENT birthdate (#PCDATA)>

<personnel>

_ <employee departmént-"ms":-
<name>

<last>Smith</last>
</name>

<first>John</first> I

<IELEMENT ssn (4PCDATAY> j G
<!ELEMENT position (#PCDATA)> :

<birthdate>1960-03-05</birthdate>
<ssn>123-45-6789</ssr>
<position>Systems Analyst</position>
</employee>
<employee deparmmt="acommti.ng">
<name> !
<fwst>l(efv1n<ff3rst> :
<last>5andes<}’ {asv
</name> e
<birthdate>1968-06-13</birthdate>
<ssn>234-56-7890</ssn>
<pos‘it1on>Aécomt1rg Manager<lpos1t1on> o l
</employee> ;
<employee departmente%érsnnnel >
<first>Sara</first>
<last>Jones</last>
</name>
<birthdate>1 980-04-4J1</ birthdate>
<ssn>345-67-8901</ssn>
<position>Secretary</position>
</employee>
</personnel>

Figure 2: This XML document contains a DTD and markup for the data contained in three personnel records.

4

February/March 1999 AS/400 NetJava Expert

